DNA Extraction Sri Bulan Musmiah G352110101

EKSTRAKSI DNA
Sri Bulan Musmiah G352110101

<table>
<thead>
<tr>
<th>NO</th>
<th>SPECIES</th>
<th>SAMPLE</th>
<th>DNA EXTRACTION</th>
<th>GENOME</th>
<th>TARGET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Moa (Aves: Dinornithiformes)</td>
<td>Bone powder</td>
<td>DNA was extracted from 200 mg of bone powder by incubation with rotation at 55°C for 48 h in 1.5 mL digestion buffer [20 mM Tris, pH 8.0, 1% Triton X-100, 10mM dithiothreitol (DTT), 1 mg/mL proteinase K and 0.47 M EDTA]. The supernatant was spun through 30,000 MWCO Vivaspin columns and then combined with 5 volumes of PBI buffer (Qiagen, Valencia, CA) before the DNA was extracted using silica spin columns (Qiagen).</td>
<td>Mitochondrial control region Total genome</td>
<td>Mitochondrial control region Total genome</td>
</tr>
<tr>
<td>2</td>
<td>Cows, pronghorn, bison, black-tailed prairie dogs (Fungi?)</td>
<td>Dung</td>
<td>Fresh dung (pellets or portions of dung patties) was collected by observing focal individuals until they defecated. Samples were collected in a clean resealable bag. These bags were kept in an iced cooler and transported back to lab within 24 h, then stored at -20°C. Frozen dung samples were cut using a sterile scalpel, and approximately 0.25 g of dung was teased out from the middle of several freshly cut subsamples. DNA was extracted using the UltraClean® Fecal DNA isolation kit</td>
<td>Fungal total genome</td>
<td>Fungal total genome</td>
</tr>
<tr>
<td>3</td>
<td>Birds</td>
<td>Feather</td>
<td>DNA extraction of the archaeological feather followed the same protocols as the fresh samples. The protocols follow strict contamination-control for the analysis of ancient remains. Two and five feather barbs were removed from the feather shaft. Barbs were first rinsed in 3% sodium hypochlorite for 30 seconds to remove possible surface contamination, then rinsed twice in DNase/RNase-free distilled water. After decontamination, two different DNA-extraction techniques were applied. The samples first underwent an MSSC extraction protocol designed for degraded DNA samples. As keratin is the major structural component of feather barbs, we modified the lysis buffer to include dithiothreitol (DTT). Barbs were incubated in 1.5 to 3 mL of lysis buffer (0.05 mol/l EDTA pH 8.0, 0.3% SDS, 0.5 mg/ml proteinase K and 10 mg/ml DTT) at 55°C for 1 to 2 hours. The remainder of the DNA extraction producing a final elution of 100 µl of DNA solution for each sample. Subsequently, the feather-barb subsamples were also extracted using a</td>
<td>Fragments 200 to 300 bp in size of the mitochondrial DNA cytochrome b gene Total genome - fragmented genome</td>
<td>Fragments 200 to 300 bp in size of the mitochondrial DNA cytochrome b gene Total genome - fragmented genome</td>
</tr>
</tbody>
</table>
commercial kit producing a final elution of 100 µl of DNA solution for each sample.
Total DNA was isolated from milk samples by a phenol/chloroform method, followed by ethanol precipitation according to Sambrook et al. (1989). Cheese samples were cut into small pieces, and total DNA from cheese matrix was obtained by performing
phenol/chlorophorm as described above.

DNA from reference strain of bacteria were prepared from pure culture according to the guanidium extraction procedure described by Pitcher et al. (1989).
Muscle: Individuals with opened and closed shells were
| tissue preserved from each beach in 80% ethanol. Muscle tissue was extracted from the middle and apex region (c. 1mm²) of the foot and cleaned with ethanol (75%) to remove sand, detritus or external organic matter. DNA extraction was performed with the Qiagen DNeasy kit, with slight modification to increase the concentration of DNA, i.e. we used 150 µl of elution buffer. | | |
the mitochondrial COI gene

total genome
<table>
<thead>
<tr>
<th>Sea cucumber</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Upon collection, specimens were cleaned in seawater, immediately frozen on dry ice (-70°C). Typically 200 mg of oral tentacle was ground in liquid N2 in the presence of 600 µl of proteinase solution (50 mM Tris–HCl, pH 7.5, 50 mM EDTA, pH 8.0, 0.4% SDS, 0.5 mg/ml Proteinase K). The ground samples were immediately placed at 65°C for minimum of 2 h. The digested samples were repeteadly extracted with phenol:chloroform:isoamyl alcohol, 25:24:1. The resultant aqueous phase was adjusted to 0.5 M NaCl and to 1% cetyltrimethylammonium bromide (CTAB) and incubated for a further 20 min at 65°C. After two final phenol/chloroform extractions, total DNA was precipitated by adding an equal volume of isopropanol followed by sedimentation at 13,000 rpm for 20 min. The DNA pellet was rinsed with 500 µl of 70% ethanol, air-dried, and resuspended in 200 µl of TE buffer (10 mM Tris–HCl, pH 7.5, 1 mM EDTA).
| 16S mitochondrial ribosomal DNA fragments | total genome |
Snake
Egg yolks, slough skin and non-invasively sampled (NIS) muscle, blood, and faecal material.
Field collected carcasses, road kills and foetal samples were directly frozen at -20°C or preserved in 95% ethanol. Ancient ethanol preserved tissue (A.E.P.T.; collected pre-1907 to 1969) consisted of museum samples. Non-viable grass snake eggs, located in compost heaps, were preserved at -20°C. Sloughed skins, mostly collected at the entrance of identified adder domains, were preserved dry at room temperature for up to two years. An additional fresh slough was obtained from an adder observed in the process of ecdysis. Snake faeces (associated with sloughs) collected from a range of UK sites were either immediately frozen at -20°C or preserved in 95% ethanol. A 10 µl blood sample, obtained by caudal extraction from an adder and stored in 90 µl of Seutin's buffer (Seutin et al., 1991) at room temperature, was collected as a positive PCR control. Sloughed skin required a rehydration step to remove impurities prior to DNA extraction. A fragment (1-2 cm²) of slough was rinsed in 1 ml of ddwater at 55 °C in a rocking incubator for 4-6 h, and repeated for a further 8-12 h. DNA extraction was performed on these rehydrated samples, egg yolks (approximately 0.2 cm³), NIS muscle (1 cm³) and blood (5 µl in Seutin's buffer) using QiagenDNeasy tissue extraction kit. Faecal material was extracted using QIAamp® DNA stool mini kit.
500 and 750 bp mtDNA

total genome
| The soft tissue, stomach and pyloric caecae | |
Upon collection, specimens were cleaned in seawater, immediately frozen on dry ice, and subsequently stored at -20°C. The soft tissue, stomach and pyloric caeca, of each starfish was removed and separated from the skeleton. The DNA was extracted using AxyPrep multi source Genomic DNA Mini-Prep Kit.
As a blood sample was available only from the proband, clipped fingernail samples were obtained from 10 of the other 12 members instead. Genomic DNA was extracted from the fingernails using a buffer solution containing urea, DDT and proteinase K, as reported previously. Briefly, clipped fingernails were once frozen in liquid nitrogen and crushed into fine powder using Multi-beads Shocker™ (Yasui Kikai, Osaka, Japan). The nail powder was lysed in a urea-lysis solution (2 M urea; 0.5 %SDS; 10 mM Tris-HCl, pH 7.5; 0.1 M EDTA) containing 1 mg/ml proteinase K and 40 mM DDT at 55 °C overnight. Nail DNA was extracted with phenol/chloroform, and precipitated with ethanol and sodium acetate. Precipitated nail DNA was dissolved again in extraction buffer (0.5 % SDS; 10 mM Tris-HCl, pH 7.5; 0.1 M EDTA) containing 1 mg/ml proteinase K, and incubated at 55 °C overnight. DNA was purified again as above, and was suspended in 30 µl of 1x TE buffer.
<table>
<thead>
<tr>
<th>Human</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blood and</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>Saliva</td>
</tr>
</tbody>
</table>
The first set DNA, blood of subjects which agreed consent obtained by phlebotomized and shipped to laboratory in Iowa City. The DNA from a 15 ml sodium citrate tube of blood was obtained using the cold protein precipitation method (Lahiri and Nurnberger 1991). The second set of DNA sample which was derived from saliva (SD for saliva derived). DNA from these caretaker-samples was processed using materials and methods using Oragene™ kits (DNA Genetek, Canada).

Subjects rinsed their mouths, then deposited 4 ml of saliva into the Oragene sample container after receiving instructions from a trained research assistant.

Both types of DNA samples were then quantified spectrophotometrically, then stored at -20°C until use.

EKSTRAKSI DNA

Sri Bulan Musmiah G352110101

<table>
<thead>
<tr>
<th>NO</th>
<th>SPECIES</th>
<th>SAMPLE</th>
<th>DNA EXTRACTION</th>
<th>GENOME</th>
<th>TARGET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Moa(Aves: Dinornithiformes)</td>
<td>Bone powder</td>
<td>DNA was extracted from 200 mg of bone powder by incubation with rotation at 55°C for 48 h in 1.5 mL digestion buffer [20 mM Tris, pH 8.0, 1% Triton X-100, 10mM dithiothreitol (DTT), 1 mg/mL proteinase K and 0.47 M EDTA]. The supernatant was spun through 30,000 MWCO Vivaspin columns and then combined with 5 volumes of PBI buffer (Qiagen, Valencia, CA) before the DNA was extracted using silica spin columns (Qiagen).</td>
<td>Mitochondrial control region</td>
<td>Total genome</td>
</tr>
<tr>
<td>Cows, pronghorn, bison, black-tailed prairie dogs (Fungi?)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fresh dung (pellets or portions of dung patties) was collected by observing focal individuals until they defecated. Samples were collected in a clean resealable bag. These bags were kept in an iced cooler and transported back to lab within 24 h, then stored at -20°C. Frozen dung samples were cut using a sterile scalpel, and approximately 0.25 g of dung was teased out from the middle of several freshly cut subsamples.

DNA was extracted using the UltraClean® Fecal DNA isolation kit.
DNA extraction of the archaeological feather followed the same protocols as the fresh samples. The protocols followed strict contamination-control for the analysis of ancient remains. Two and five feather barbs were removed from the feather shaft. Barbs were first rinsed in 3% sodium hypochlorite for 30 seconds to remove possible surface contamination, then rinsed twice in DNase/RNase-free distilled water. After decontamination, two different DNA-extraction techniques were applied. The samples first underwent an MSSC extraction protocol designed for degraded DNA samples. As keratin is the major structural component of feather barbs, we modified the lysis buffer to include dithiothreitol (DTT). Barbs were incubated in 1.5 to 3 ml of lysis buffer (0.05 mol/l EDTA pH 8.0, 0.5% SDS, 0.5 mg/ml proteinase K and 10 mg/ml DTT) at 55°C for 1 to 2 hours. The remainder of the DNA extraction producing a final elution of 100 µl of DNA solution for each sample. Subsequently, the feather-barb subsamples were also extracted using a commercial kit producing a final elution of 100 µl of DNA solution for each sample.
Fragments 200 to 300 bp in size of the mitochondrial DNA cytochrome b gene

Total genome - fragmented genome
Milk and curd
Total DNA was isolated from milk samples by a phenol/chloroform method, followed by ethanol precipitation according to Sambrook et al. (1989). Cheese samples were cut into small pieces, and total DNA from cheese matrix was obtained by performing phenol/chloroform as described above.

DNA from reference strain of bacteria were prepared from pure culture according to the guanidium extraction procedure described by Pitcher et al. (1989).
Total genome, include microbial genomics.
<table>
<thead>
<tr>
<th>Muscle tissue</th>
</tr>
</thead>
</table>
Individuals with opened and closed shells were preserved from each beach in 80% ethanol. Muscle tissue was extracted from the middle and apex region (c. 1mm²) of the foot and cleaned with ethanol (75%) to remove sand, detritus or external organic matter. DNA extraction was performed with the Qiagen DNUMini kit, with slight modification to increase the concentration of DNA, i.e. we used 150 µl of elution buffer.
<table>
<thead>
<tr>
<th>Fragment of the mitochondrial COI gene</th>
<th>total genome</th>
</tr>
</thead>
</table>

...
Sea cucumber
Upon collection, specimens were cleaned in seawater, immediately frozen on dry ice (-70°C). Typically 200 mg of oral tentacle was ground in liquid N2 in the presence of 600 µl of proteinase solution (50 mM Tris–HCl, pH 7.5, 50 mM EDTA, pH 8.0, 0.4% SDS, 0.5 mg/ml Proteinase K). The ground samples were immediately placed at 65°C for a minimum of 2 h. The digested samples were repeatedly extracted with phenol:chloroform:isoamyl alcohol, 25:24:1. The resultant aqueous phase was adjusted to 0.5 M NaCl and to 1% cetyltrimethylammonium bromide (CTAB) and incubated for a further 20 min at 65°C. After two final phenol/chloroform extractions, total DNA was precipitated by adding an equal volume of isopropanol followed by sedimentation at 13,000 rpm for 20 min. The DNA pellet was rinsed with 500 µl of 70% ethanol, air-dried, and resuspended in 200 µl of TE buffer (10 mM Tris–HCl, pH 7.5, 1 mM EDTA).
16S
mitochondrial ribosomal DNA fragments

total genome
Egg yolks, slough skin and non-invasively sampled (NIS) muscle, blood, and faecal material.
Field collected carcasses, road kills and foetal samples were directly frozen at -20°C or preserved in 95% ethanol. Ancient ethanol preserved tissue (A.E.P.T.; collected pre-1907 to 1969) consisted of museum samples. Non-viable grass snake eggs, located in compost heaps, were preserved at -20°C. Sloughed skins, mostly collected at the entrance of identified adder domains, were preserved dry at room temperature for up to two years. An additional fresh slough was obtained from an adder observed in the process of ecdysis. Snake faeces (associated with sloughs) collected from a range of UK sites were either immediately frozen at -20°C or preserved in 95% ethanol. A 10 µl blood sample, obtained by caudal extraction from an adder and stored in 90 µl of Seutin's buffer (Seutin et al., 1991) at room temperature, was collected as a positive PCR control. Sloughed skin required a rehydration step to remove impurities prior to DNA extraction. A fragment (1-2 cm²) of slough was rinsed in 1 ml of ddwater at 55 °C in a rocking incubator for 4-6 h, and repeated for a further 8-12 h. DNA extraction was performed on these rehydrated samples, egg yolks (approximately 0.2 cm³), NIS muscle (1 cm³) and blood (5 µl in Seutin's buffer) using Qiagen DNeasy tissue extraction kit. Faecal material was extracted using QIAamp® DNA stool mini kit.
| The soft tissue, stomach and pyloric caecae | |
Upon collection, specimens were cleaned in seawater, immediately frozen on dry ice, and subsequently stored at -20°C. The soft tissue, stomach and pyloric caeca of each starfish was removed and separated from the skeleton. The DNA was extracted using AxyPrep multi source Genomic DNA Mini-Prep Kit.
| Human | |
As a blood sample was available only from the proband, clipped fingernail samples were obtained from 10 of the other 12 members instead. Genomic DNA was extracted from the fingernails using a buffer solution containing urea, DDT and proteinase K, as reported previously. Briefly, clipped fingernails were once frozen in liquid nitrogen and crushed into fine powder using Multi-beads Shocker™ (Yasui Kikai, Osaka, Japan). The nail powder was lysed in a urea-lysis solution (2 M urea; 0.5 % SDS; 10 mM Tris-HCl, pH 7.5; 0.1 M EDTA) containing 1 mg/ml proteinase K and 40 mM DDT at 55 °C overnight. Nail DNA was extracted with phenol/chloroform, and precipitated with ethanol and sodium acetate. Precipitated nail DNA was dissolved again in extraction buffer (0.5 % SDS; 10 mM Tris-HCl, pH 7.5; 0.1 M EDTA) containing 1 mg/ml proteinase K, and incubated at 55 °C overnight. DNA was purified again as above, and was suspended in 30 µl of 1x TE buffer.
| Blood and Saliva | |
The first set DNA, blood of subjects which agreed consent obtained by phlebotomized and shipped to laboratory in Iowa City. The DNA from a 15 ml sodium citrate tube of blood was obtained using the cold protein precipitation method (Lahiri and Nurnberger 1991). The second set of DNA sample which was derived from saliva (SD for saliva derived). DNA from these caretaker-samples was processed using materials and methods using Oragene™ kits (DNA Genetek, Canada).

Subjects rinsed their mouths, then deposited 4 ml of saliva into the Oragene sample container after receiving instructions from a trained research assistant.

Both types of DNA samples were then quantified spectrophotometrically, then stored at -20°C until use.

EKSTRAKSI DNA

Sri Bulan Musmiah G352110101

<table>
<thead>
<tr>
<th>NO</th>
<th>SPECIES</th>
<th>SAMPLE</th>
<th>DNA EXTRACTION</th>
<th>GENOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Moa(Aves: Dinornithiformes)</td>
<td>Bone powder</td>
<td>DNA was extracted from 200 mg of bone powder by incubation with rotation at 55°C for 48 h in 1.5 mL digestion buffer [20 mM Tris, pH 8.0, 1% Triton X-100, 10mM dithiotheitol (DTT), 1 mg/mL proteinase K and 0.47 M EDTA]. The supernatant was spun through 30,000 MWCO Vivaspin columns and then combined with 5 volumes of PBI buffer (Qiagen, Valencia, CA) before the DNA was extracted using silica spin columns (Qiagen).</td>
<td>Mitochondrial control region</td>
</tr>
</tbody>
</table>
Cows, pronghorn, bison, black-tailed prairie dogs (Fungi?)
Fresh dung (pellets or portions of dung patties) was collected by observing focal individuals until they defecated. Samples were collected in a clean resealable bag. These bags were kept in an iced cooler and transported back to lab within 24 h, then stored at -20°C. Frozen dung samples were cut using a sterile scalpel, and approximately 0.25 g of dung was teased out from the middle of several freshly cut subsamples.

DNA was extracted using the UltraClean® Fecal DNA isolation kit.
Birds
DNA extraction of the archaeological feather followed the same protocols as the fresh samples. The protocols follows strict contamination-control for the analysis of ancient remains. Two and five feather barbs were removed from the feather shaft. Barbs were first rinsed in 3% sodium hypochlorite for 30 seconds to remove possible surface contamination, then rinsed twice in DNase/RNase-free distilled water. After decontamination, two different DNA-extraction techniques were applied. The samples first underwent an MSSC extraction protocol designed for degraded DNA samples. As keratin is the major structural component of feather barbs, we modified the lysis buffer to include dithiothreitol (DTT). Barbs were incubated in 1.5 to 3 ml of lysis buffer (0.05 mol/l EDTA pH 8.0, 0.5% SDS, 0.5 mg/ml proteinase K and 10 mg/ml DTT) at 55°C for 1 to 2 hours. The remainder of the DNA extraction producing a final elution of 100 µl of DNA solution for each sample. Subsequently, the feather-barb subsamples were also extracted using a commercial kit producing a final elution of 100 µl of DNA solution for each sample.
Fragments 200 to 300 bp in size of the mitochondrial DNA cytochrome b gene

Total genome - fragmented genome
| Cow | |
| Milk and curd | |
Total DNA was isolated from milk samples by a phenol/chloroform method, followed by ethanol precipitation according to Sambrook et al. (1989). Cheese samples were cut into small pieces, and total DNA from cheese matrix was obtained by performing phenol/chloroform as described above.

DNA from reference strain of bacteria were prepared from pure culture according to the guanidium extraction procedure described by Pitcher et al. (1989).
| Clams | |
| Muscle tissue | |
Individuals with opened and closed shells were preserved from each beach in 80% ethanol. Muscle tissue was extracted from the middle and apex region (c. 1mm²) of the foot and cleaned with ethanol (75%) to remove sand, detritus or external organic matter. DNA extraction was performed with the Qiagen DNAMini kit, with slighty modification to increase the concentration of DNA, i.e. we used 150 µl of elution buffer.
| Fragment of the mitochondrial COI gene | total genome |
Upon collection, specimens were cleaned in seawater, immediately frozen on dry ice (-70°C). Typically 200 mg of oral tentacle was ground in liquid N2 in the presence of 600 µl of proteinase solution (50 mM Tris–HCl, pH 7.5, 50 mM EDTA, pH 8.0, 0.4% SDS, 0.5 mg/ml Proteinase K). The ground samples were immediately placed at 65°C for a minimum of 2 h. The digested samples were repeatedly extracted with phenol:chloroform:isoamyl alcohol, 25:24:1. The resultant aqueous phase was adjusted to 0.5 M NaCl and to 1% cetyltrimethylammonium bromide (CTAB) and incubated for a further 20 min at 65°C. After two final phenol/chloroform extractions, total DNA was precipitated by adding an equal volume of isopropanol followed by sedimentation at 13,000 rpm for 20 min. The DNA pellet was rinsed with 500 µl of 70% ethanol, air-dried, and resuspended in 200 µl of TE buffer (10 mM Tris–HCl, pH 7.5, 1 mM EDTA).
Egg yolks, slough skin and non-invasively sampled muscle, blood, and faecal material.
Field collected carcasses, road kills and foetal samples were directly frozen at -20°C or preserved in 95% ethanol. Ancient ethanol preserved tissue (A.E.P.T.; collected pre-1907 to 1969) consisted of museum samples. Non-viable grass snake eggs, located in compost heaps, were preserved at -20°C. Sloughed skins, mostly collected at the entrance of identified adder domains, were preserved dry at room temperature for up to two years. An additional fresh slough was obtained from an adder observed in the process of ecdysis. Snake faeces (associated with sloughs) collected from a range of UK sites were either immediately frozen at -20°C or preserved in 95% ethanol. A 10 µl blood sample, obtained by caudal extraction from an adder and stored in 90 µl of Seutin's buffer (Seutin et al., 1991) at room temperature, was collected as a positive PCR control. Sloughed skin required a rehydration step to remove impurities prior to DNA extraction. A fragment (1-2 cm²) of slough was rinsed in 1 ml of ddwater at 55 °C in a rocking incubator for 4-6 h, and repeated for a further 8-12 h. DNA extraction was performed on these rehydrated samples, egg yolks (approximately 0.2 cm³), NIS muscle (1 cm³) and blood (5 µl in Seutin's buffer) using Qiagen DNeasy tissue extraction kit. Faecal material was extracted using QIAamp DNA stool mini kit.
| The soft tissue, stomach and pyloric caeca | |
Upon collection, specimens were cleaned in seawater, immediately frozen on dry ice, and subsequently stored at -20°C. The soft tissue, stomach and pyloric caeca, of each starfish was removed and separated from the skeleton. The DNA was extracted using AxyPrep multi source Genomic DNA Mini-Prep Kit.
Leukocytes and fingernails
As a blood sample was available only from the proband, clipped fingernail samples were obtained from 10 of the other 12 members instead. Genomic DNA was extracted from the fingernails using a buffer solution containing urea, DDT and proteinase K, as reported previously. Briefly, clipped fingernails were once frozen in liquid nitrogen and crushed into fine powder using Multi-beads Shocker™ (Yasui Kikai, Osaka, Japan). The nail powder was lysed in a urea-lysis solution (2 M urea; 0.5 %SDS; 10 mM Tris-HCl, pH 7.5; 0.1 M EDTA) containing 1 mg/ml proteinase K and 40 mM DDT at 55 °C overnight. Nail DNA was extracted with phenol/chloroform, and precipitated with ethanol and sodium acetate. Precipitated nail DNA was dissolved again in extraction buffer (0.5 % SDS; 10 mM Tris-HCl, pH 7.5; 0.1 M EDTA) containing 1 mg/ml proteinase K, and incubated at 55 °C overnight. DNA was purified again as above, and was suspended in 30 µl of 1x TE buffer.
The first set DNA, blood of subjects which agreed consent obtained by phlebotomized and shipped to laboratory in Iowa City. The DNA from a 15 ml sodium citrate tube of blood was obtained using the cold protein precipitation method (Lahiri and Nurnberger 1991). The second set of DNA sample which was derived from saliva (SD for saliva derived). DNA from these caretaker-samples was processed using materials and methods using Oragene™ kits (DNA Genetek, Canada).

Subjects rinsed their mouths, then deposited 4 ml of saliva into the Oragene sample container after receiving instructions from a trained research assistant.

Both types of DNA samples were then quantified spectrophotometrically, then stored at -20°C until use.

