Riparian Landscape Management

Riparian Landscape Management in the Midstream of Ciliwung River as Supporting Water Sensitive Cities Program with Priority of Productive Landscape

TUZ Noviandi, RL Kaswanto and HS Arifin

Published under licence by IOP Publishing Ltd

IOP Conference Series: Earth and Environmental Science, Volume 91, conference 1

Abstract

Nowadays, Ciliwung River is facing problem of the settlement occupation in its riparian zones. This phenomenon caused ecological damage in riparian, so it can aggravate the disaster of annual flooding in Jakarta. As an effort to control this catastrophe, riparian landscape management of Ciliwung River is needed. Based on its topography, Ciliwung River is divided into three segments, there are the upstream, the midstream, and the downstream. Data shows that riparian in the midstream is the largest area, it covers more than 60% of the total riparian area. This segment is very important to be managed in order to reduce runoff towards the downstream. The method used was comparing many standards to get the ideal riparian width in the midstream, which is 50 m for urban areas and 100 m for outside the urban areas. Next method was analyzing spatially to get riparian landscape characteristic of Ciliwung River. The result showed that 37.11% of riparian zones in the midstream had occupied by settlement. Analysis of riparian function and utilization had held by using Analytical Hierarchy Process. Priority of riparian function in the midstream of Ciliwung River is production. This can be realized with the plan of community garden or inland fisheries. Riparian landscape management in the midstream aims to support the food consumption diversification, and maximize the function of water catchment and water retention in order to support the program of Water Sensitive Cities.
Riparian landscape management

Atau unduh di sini Noviandi_2017_IOP_Conf._Ser.__Earth_Environ._Sci._91_012033

References

- [1]

 Crossref

- [2]
Arifasihati Y and Kaswanto 2016 Analysis of Land Use and Cover Changes in Ciliwung and Cisadane Watershed in three Decades *Procedia Environmental Sciences* **33** 465-469

Crossref

- [3]

Arifin HS and Nakagoshi N. 2011 Landscape ecology and urban biodiversity in tropical Indonesian cities *J Landscape and Ecological Engineering* **7** 33-43

Crossref

- [4]

Arroyo AL, Johansen K, Armston J and Phinn S. 2010 Integration of LiDAR and QuickBird imagery for mapping riparian biophysical parameters and land cover types in Australian tropical savannas *J Forest and Management* **259** 598-606

- [5]

Crossref

- [6]

Crossref

Watershed Proceeding of The Ontario Wetlands Conference 33-47

- [9]

Crossref

- [10]

Clerici N, Paracchini ML and Maes J. 2014 Land-cover change dynamics and insights into ecosystem services in European stream riparian zones J Ecohydrology and Hydrobiology 14 107-120

Crossref

- [12]

Crossref

- [13]

Kaswanto and Utami FNH 2016 The Disparity of Watershed Development between Northern and Southern Region of Java Island *Procedia Environmental Sciences* **33** 21-26

 Crossref

- [22] Sliva L and Williams DD 2001 Buffer zone versus whole catchment approaches to studying land use impact on river water quality *J Water Res.* **35** 3462-3472

 Crossref

 Crossref

 Crossref

 https://www.monash.edu/__data/assets/pdf_file/0003/293691/msi-seminar_10-

[Crossref](http://kaswanto.staff.ipb.ac.id/riparian-landscape-management/05-25_cwsc_presentation.pdf) Accessed 30 October 2016

[26]